
1© 2022 edX Boot Camps LLC. Confidential and Proprietary. All Rights Reserved.

Skills Bootcamp in Front-End Web Development

Advanced ES6

Lesson 11.3

2

Office Hours
30 Minutes

3

WELCOME

4

Learning Objectives

By the end of class, you will be able to:

Identify and implement how and when to use for...of loops.

Identify and implement how and when to use the spread and rest operators.

Use destructuring assignment syntax to unpack values from arrays,
or properties from objects, into unique variables.

5

Stoke Curiosity

6

Congratulations on learning some of the most used
ES6 syntax rules. Learning new syntax can be time-
consuming and difficult, but it won't always feel like that.

6

7

Using these rules more will allow you
to commit them to memory and use
less mental bandwidth going forward.

One of the best ways to learn
these new rules is to use the newer
syntax whenever possible.

The old syntax is still perfectly
valid and students can always
fall back on it.

7

Stoke Curiosity

8

These newer syntax rules were not born in a vacuum. They are the result of years of revision
by a standards organization called ECMA. It is important to have standards in web
development to ensure maximum compatibility across a wide spectrum of web browsers.

8https://www.ecma-international.org/

Stoke Curiosity

https://www.ecma-international.org/

9

Stoke Curiosity

https://www.w3schools.com

Version Year Official Name

ES1 1997 ECMAScript 1

ES2 1998 ECMAScript 2

ES3 1999 ECMAScript 3

ES4 never
released ECMAScript 4

ES5 2009 ECMAScript 5

ES6 2015 ECMAScript 2015

2016 ECMAScript 2016

2017 ECMAScript 2017

2018 ECMAScript 2018

● The ES in ES6 stands for ECMAScript.
● ECMAScript itself is a programming language,

but as far as we are concerned, it is just a
language from which syntax rules are inherited.

● We can find a more detailed history in the
Wikipedia article on ECMAScript.

https://www.w3schools.com/js/js_versions.asp
https://en.wikipedia.org/wiki/ECMAScript

10

Instructor Demonstration
for...of

11

Demo: for...of

Notice when we run the code that we see each value in the songs array, as follows:
var songs = ['Bad Guy', 'Old Town Road', '7 Rings'];

for (const value of songs) {
 console.log(value);
}

After we comment in the second example, we use a for...of loop to iterate over an
object or map, as shown in the following code:

const songs = new Map([['Bad Guy', 1], ['Old Town Road', 2]]);

for (const [key, value] of songs) {
 console.log(`${key}'s chart position is ${value}`);
}

The for...of statement creates a loop iterating over objects, including Array, Map,
Set, String, TypedArray.

12

How does the for...of seem
to differ from a forEach?

13

The forEach method
only applies to arrays,
while the for...of
is much more flexible.

13

14

Suggested Time:

Activity: for...of

10 Minutes

15

Time’s Up! Let’s Review.

16

Review: for...of

const songs = document.querySelectorAll("ul > li");

for (const song of songs) {
 song.classList.add("green");
}

● The syntax for the for...of loop reads very similar to plain English, which
helps conceptualize what is happening in the program.

● The syntax is relatively straightforward. The key takeaway is knowing when
to use and what to use it for.

● When we open the index.html file, we notice that each line item in the
unordered list has a green color.

● This is the result of using the for...of loop to iterate over each line item
and add the class of green to the class list for the given element, as follows:

17

Review: for...of

If you forget the syntax, VS Code can help you create these types of loops by
offering a snippet to work from.

You can try it yourself by typing forof and simply pressing Enter, which will
result in the following code:

for (const iterator of object) {

}

18

How do you know when to use
a for...of loop?

19

While it generally depends on the
situation, for...of loops help most
when you need to iterate through
key-value pairs in an object.

20

What can we
do if we don’t

completely
understand this?

20

21

We can refer to supplemental material, read the
MDN Web Docs on for...of, and stick around

for office hours to ask for help.

https://developer.mozilla.org/en-US/docs/Web/JavaScript/Reference/Statements/for...of

22

Instructor Demonstration
Rest and Spread Operators

23

Demo: Rest and Spread Operators

When we run the file, we get output for a few different operations: without the
rest parameter, with the rest parameter, without spread operator, and with spread
operator, as shown in the following example:

function add(x, y) {
 return x + y;
}

console.log(add(1, 2, 3, 4, 5)) // => 3

It is possible to call a function with any number of arguments, but only the first two
will be counted.

24

Demo: Rest and Spread Operators

Let’s examine this function using rest parameters, as follows:

function add(...nums) {
 let sum = 0;
 for (let num of nums) sum += num;
 return sum;
}

add(1) // => 1
add(3,3) // => 6
add(1, 1, 4, 5) // => 11

In this example, we use rest parameters (...nums) to collect all of the arguments
into a nums array, enabling us to pass in as many arguments as we want.

25

Demo: Rest and Spread Operators

Now let’s review the following example:

function howManyArgs(...args) {
 return `You passed ${args.length} arguments.`; // point out the template literal
}

console.log(howManyArgs(0, 1)); // You have passed 2 arguments.
console.log(howManyArgs("argument!", null, ["one", 2, "three"], 4)); // You have passed 4 arguments.

The takeaway here is that variables are now available inside the array of the
function. We can also pass as many in as we want.

The spread operator ... allows iterables like arrays, objects, and strings to be
expanded into single arguments or elements.

26

You can compare this to
pouring items out of a cup.

The only difference is that
the items are variables
and the cup is an iterable.

26

iterable

variable

27

Demo: Rest and Spread Operators

In the following example, we have expanded both arrays into a new array with all
of the elements:

// Spread Operator

let dragons = ['Drogon', 'Viserion', 'Rhaegal'];
let weapons = ['dragonglass', ...dragons, 'wildfire']; // notice the spread operator ...dragons

console.log(weapons); // prints ["dragonglass", "Drogon", "Viserion", "Rhaegal", "wildfire"]

28

Why does the first example of
the add() function only output 3?

29

Because only the first and second
parameter get counted without
the use of the rest operator.

30

The syntax for spread and rest
are similar, but what is the
difference between the two?

31

The rest parameter allows us to
pass in any number of arguments,
while the spread operator allows
us to spread out an iterable into
unique variables.

32

Questions?

33

Suggested Time:

Pair Programming Activity:

Rest and Spread Operators

15 Minutes

34

Time’s Up! Let’s Review.

35

Review: Rest and Spread Operators

In the first exercise, we are using the spread operator to copy the items in the
songs array to the new_songs array.

Much like we would be dumping out the contents of a cup, we are populating the
new_songs array with the items in songs, as shown in the following code:

const songs = ["Creep", "Everlong", "Bulls On Parade", "Song 2", "What I Got"];
const new_songs = [...songs];

console.log(new_songs); // => ["Creep", "Everlong", "Bulls On Parade", "Song 2", "What I Got"];

36

Review: Rest and Spread Operators
In the second exercise, we use the reduce() method to execute a reducer function on each
element of the array. In our case, the reducer function was adding all the numbers up.

const addition = (x, y, z) => {
 const array = [x, y, z];
 return array.reduce((a, b) => a + b, 0);
};

Then we modified the addition() function to make use of the rest parameters.
The additionSpread() function allows us to pass in as many arguments as we need.
This is particularly useful in this case where we want to add as many numbers as necessary.

const additionSpread = (...array) => {
 return array.reduce((a, b) => a + b, 0);
};

37

Review: Rest and Spread Operators

If we run node index.js in our command line, we will see the results of the
console.logs.

console.log(addition(1, 2, 3)); // => 6
console.log(additionSpread(1, 2, 3)); // => 6
console.log(additionSpread(1, 2, 3, 4, 100)); // => 110

This is just an introduction. You will begin to pick up fluency as you get more practice.

38

What does the reduce() method
help us with in this exercise?

39

The reduce() method reduces an
array to a single value. It takes a
callback function and runs that
function for each value in the array
starting from the left to the right.

40

What can we
do if we don’t

completely
understand this?

40

41

Read the MDN Web Docs on spread

We can refer to supplemental material and stick around
for office hours to ask for help.

Read the MDN Web Docs on rest

https://developer.mozilla.org/en-US/docs/Web/JavaScript/Reference/Operators/Spread_syntax
https://developer.mozilla.org/en-US/docs/Web/JavaScript/Reference/Functions/rest_parameters

42

Questions?

43

Instructor Demonstration

Object Destructuring

44

Demo: Object Destructuring
Notice that when we run the index.js file we see several variables logged to the
terminal. Each of these are different ways of accessing variables inside an object.
Also, in the file, we are using dot notation to access variables inside an object,
as we have in the past. We are plucking off certain variables and setting them
equal to the value of the object.
This is done with curly braces on the left side of the equals sign, as shown in the
following example:

const arya = {
 name: 'Arya Stark',
 parents: ['Eddard Stark', 'Catelyn Stark'],
};

const { name, parents } = arya;

45

Demo: Object Destructuring

You can now also use object destructuring as a way to pluck off certain variables
from an object.

Consider the following example:

const betterLogCharacter = ({ name, parents }) =>
console.log(`${name}'s parents are: ${parents[0]} and ${parents[1]}.`);

betterLogCharacter(jaime);

46

How would we build this?

47

We could look up examples of object destructuring and get a feel for the logic
before attempting the activity.

Review: Object Destructuring

object destructuring

48

Questions?

49

Suggested Time:

Activity: Object Destructuring

10 Minutes

50

Time’s Up! Let’s Review.

51

Review: Object Destructuring

This exercise highlights how we can pluck off multiple properties at once,
saving us a few lines of code.

We can also destructure function parameters. This allows us to name them
directly and again save a few steps.

Now we can simply expect an object and pull the properties off without
worrying about the order they’re passed in or writing extra code to destructure
them the old way.

52

Review: Object Destructuring

In the past, if we wanted to cherry-pick an object's properties, we’d have to do
something like the following example:

const nodejs = {
 name: 'Node.js',
 type: 'JavaScript runtime environment',
};

const nodejsName = nodejs.name;
const nodejsType = nodejs.type;

console.log(nodejsName); // <= Node.js
console.log(nodejsType); // <= JavaScript runtime environment

53

Review: Object Destructuring
With ES6 object destructuring syntax, we can destructure data based on their property key names:

const { name, type } = nodejs;

console.log(name); // <= Node.js
console.log(type); // <= JavaScript runtime environment

For a nested object, we need to be more specific:

const { framework1, framework2 } = js.tools.frameworks;

console.log(framework1); // <= AngularJS
console.log(framework2); // <= Vue.js

For arrays, we can destructure data by the index:

const languages = ['HTML', 'CSS', 'JavaScript'];

const [markup, style, scripting] = languages;

console.log(markup, style, scripting); // <= HTML CSS JavaScript
console.log(markup); // <= HTML

54

Does the order matter when
passing destructured object
properties into a function?

55

No! Because we are referring to
the properties in the object by
name, the key names will align
with the correct value every time.

56

What can we
do if we don’t

completely
understand this?

56

57

We can refer to supplemental material, read the
MDN Web Docs on object destructuring, and stick around

for office hours to ask for help.

https://developer.mozilla.org/en-US/docs/Web/JavaScript/Reference/Operators/Destructuring_assignment

58

Questions?

5959

60

Instructor Demonstration
Mini-Project

61

Questions?

62

Suggested Time:

Pair Programming Activity:

Mini-Project
In this activity, you’ll work with a partner to
build a command-line tool that generates an
HTML portfolio page from user input.

40 Minutes

63

Time’s Up! Let’s Review.

64

Review: Mini-Project

We can...

Construct an
HTML string
using string

template literals.

Use promises
(or the async/await
syntax as Bonus) to
control the flow of

asynchronous code.

Use the
fs.writeFile method

to create and write
to the needed
index.html file.

65

Review: Mini-Project

We import the required packages first, as follows:

const inquirer = require("inquirer");
const fs = require("fs");
const util = require("util");

We use the util.promisify method to take a function that uses Node style
callbacks to create a new version of the function that now uses Promises.

As shown in the following example, it does exactly what it sounds like:

const WriteFileAsync = util.promisify(fs.writeFile);

66

Review: Mini-Project

inquirer.prompt({}) will collect
the needed responses from the user
and assign them to an object for us.

We called the object answers, as
shown in the following example:

function promptUser() {
 return inquirer.prompt([
 {
 type: "input",
 name: "name",
 message: "What is your name?"
 },
 {
 type: "input",
 name: "location",
 message: "Where are you from?"
 },
 {
 type: "input",
 name: "hobby",
 message: "What is your favorite hobby?"
 },
 {
 type: "input",
 name: "food",
 message: "What is your favorite food?"
 },
 {
 type: "input",
 name: "github",
 message: "Enter your GitHub Username"
 },
 {
 type: "input",
 name: "linkedin",
 message: "Enter your LinkedIn URL."
 }
]);
}

67

You might be wondering what
is the best way to actually make
the HTML for this project?

68

Review: Mini-Project
Here we use a helper function, generateHTML that will return a template string. We then inject
the responses directly into that template string using the ${} syntax, like in the following code:

function generateHTML(answers) {
 return `
<!DOCTYPE html>
<html lang="en">
<head>
 <meta charset="UTF-8">
 <meta http-equiv="X-UA-Compatible" content="ie=edge">
 <link rel="stylesheet" href="https://maxcdn.bootstrapcdn.com/bootstrap/4.0.0/css/bootstrap.min.css">
 <title>Document</title>
</head>
<body>
 <div class="jumbotron jumbotron-fluid">
 <div class="container">
 <h1 class="display-4">Hi! My name is ${answers.name}</h1>
 <p class="lead">I am from ${answers.location}.</p>
 <h3>Example heading Contact Me</h3>
 <ul class="list-group">
 <li class="list-group-item">My GitHub username is ${answers.github}
 <li class="list-group-item">LinkedIn: ${answers.linkedin}

 </div>
</div>
</body>
</html>`;
}

69

Review: Mini-Project

Finally, we call the promptUser function, and on success we generate the HTML
file with these customized responses. We then create the file, appending the
contents of the HTML template literal we created, like in the following example:

promptUser()
 .then(function(answers) {
 const html = generateHTML(answers);

 return writeFileAsync("index.html", html);
 })
 .then(function() {
 console.log("Successfully wrote to index.html");
 })
 .catch(function(err) {
 console.log(err);
 });

70

Review: Mini-Project

Let’s take a quick look at the Bonus. Code using the await syntax must be inside
of a function declared with the async identifier. We’re also using a try/catch block
to handle any errors that might occur when using async/await.

You can see this in the following example:

async function init() {
console.log("hi")
try {
 const answers = await promptUser();

 const html = generateHTML(answers);

 await writeFileAsync("index.html", html);

 console.log("Successfully wrote to index.html");
} catch(err) {
 console.log(err);
}

71

How can asynchronous code help
developers write better code?

72https://javascript.plainenglish.io

Review: Mini-Project

Asynchronous programming allows the code to execute logic without blocking
the rest of the application’s functionality.

Synchronous

Asynchronous

...

............

Start operations Responses

https://javascript.plainenglish.io/async-await-for-beginners-understanding-asynchronous-code-in-javascript-748b57ae94e2

73

What can we
do if we don’t

completely
understand this?

73

74

We can refer to supplemental material, read the
MDN Web Docs on asynchronous JavaScript, and stick

around for office hours to ask for help.

https://developer.mozilla.org/en-US/docs/Learn/JavaScript/Asynchronous

7575

