
1© 2022 edX Boot Camps LLC. Confidential and Proprietary. All Rights Reserved.

Skills Bootcamp in Front-End Web Development

Introduction to ES6

Lesson 11.1

2

Office Hours
30 Minutes

3

WELCOME

4

Be sure to install Node.js it using the resources found on the
Node.js installation guide on The Full-Stack Blog

4

https://coding-boot-camp.github.io/full-stack/nodejs/how-to-install-nodejs

5

Learning Objectives

By the end of class, you will be able to:

Run very simple JavaScript files from the command line using Node.js.

Explain arrow functions and how they impact the this context.

Use template strings and use const and let in place of var.

Use functional loops like map() and filter().

6

What is Node.js?

7

NodeJS...

Is an open source, cross-platform JavaScript runtime environment designed to be
run outside of the browser.

Is a general utility that can be used for a variety of other purposes, including asset
compilation, scripting, monitoring, and as the basis for web servers.

8

Instructor Demonstration
Mini-Project

9

What are we learning?

10

 We are learning more about Node.js, third-party modules,
and Node’s native fs module.

var fs = require('fs');

10

11

How does this project build off or
extend previously learned material?

12

We are continuing to expand our knowledge of
using JavaScript to build programs, but this time

we are working outside the browser.

13

Questions?

14

Instructor Demonstration
Node.js

15

Questions?

16

Suggested Time:

Activity: Node.js

10 Minutes

17

Time’s Up! Let’s Review.

18

FIST TO FIVE:

How comfortable do you feel with the Node.js thus far?

19

What happens if we
were to log window
to the console?

01 02

What kinds of things
do we think are
possible in the
browser, but not
possible in Node.js?

03

What can we do if
we don’t completely
understand this?

Review: Node.js

20

What happens if we
were to log window
to the console?

01 02

What kinds of things
do we think are
possible in the
browser, but not
possible in Node.js?

03

What can we do if
we don’t completely
understand this?

Review: Node.js

We get an error—window
is not defined in Node.js.

 We can’t use prompts,
confirms, or alerts because

of the window object.

We can refer to
supplemental material, read
the Node.js documentation,
and stick around for office

hours to ask for help.

https://nodejs.org/en/docs/

21

Questions?

22

Instructor Demonstration
Arrow Functions

23

Questions?

24

Suggested Time:

Pair Programming Activity:

Arrow Function Practice

15 Minutes

25

Time’s Up! Let’s Review.

26

Review: Arrow Function Practice

The following funnyCase() function is able to use arrow syntax, because there is
no this context that needs to be preserved:

var funnyCase = string => {
 var newString = "";
 for (var i = 0; i < string.length; i++) {
 if (i % 2 === 0) newString += string[i].toLowerCase();
 else newString += string[i].toUpperCase();
 }
 return newString;
};

27

Review: Arrow Function Practice

When using arrow functions, we can use an implied return to reduce the code
even further, as shown in the following example:

var numbers = [1, 2, 3, 4, 5, 6, 7, 8, 9, 10];

var doubled = map(numbers, element => element * 2);

28

Review: Arrow Function Practice

In the following example, we had to convert the arrow functions back to regular
functions to preserve the context of this in the object:

var netflixQueue = {
 queue: [
 "Mr. Nobody",
 "The Matrix",
 "Eternal Sunshine of the Spotless Mind",
 "Fight Club"
],
 watchMovie: function() {
 this.queue.pop();
 },
};

29

Why would you use arrow functions?

30

The syntax is easier to write and
makes for cleaner-looking code.

31

What can we
do if we don’t

completely
understand this?

31

32

We can refer to supplemental material, read the
MDN Web Docs on arrow functions, and stick around

for office hours to ask for help.

https://developer.mozilla.org/en-US/docs/Web/JavaScript/Reference/Functions/Arrow_functions

33

Instructor Demonstration
let and const

34

Questions?

35

Suggested Time:

Pair Programming Activity:

Convert to ES6 Syntax

15 Minutes

36

Time’s Up! Let’s Review.

37

Review: Convert to ES6 Syntax

A good way to think about these variable names is to ask yourself “does this
need to be changed in future?” If the answer is no, you should use const.

const $root = document.querySelector("#root");

38

Review: Convert to ES6 Syntax

Ask yourself if you need to take advantage of the this context inside your
function. If not, convert it to an arrow function.

const makeGuess = () => {
 const $score = document.querySelector("#root p");
 $score.textContent = "Score: " + score + " | " + "Target: " + targetScore;

 if (score > targetScore) {
 alert("You lost this round!");
 playRound();
 } else if (score === targetScore) {
 alert("You won this round!");
 playRound();
 }
};

39

Review: Convert to ES6 Syntax
This kind of function is called a constructor function. Arrow functions can't be used in constructor
functions.

const Crystal = function(color) {
 this.element = document.createElement("div");
 this.element.className = "crystal " + color;
 this.value = 0;

 this.element.addEventListener(
 "click",
 () => {
 score += this.value;
 makeGuess();
 },
 false
);
};

40

 What is a good use for let?

41

When we need to reassign a value.
An example of this would be a
counter variable like i.

42

What can we
do if we don’t

completely
understand this?

42

43

Read the MDN Web Docs on let

We can refer to supplemental material and stick around
for office hours to ask for help.

Read the MDN Web Docs on const

https://developer.mozilla.org/en-US/docs/Web/JavaScript/Reference/Statements/let
https://developer.mozilla.org/en-US/docs/Web/JavaScript/Reference/Statements/const

44

Questions?

4545

46

Instructor Demonstration
Functional Loops

47

What is the difference between
filter() and forEach()?

48

Functional Loops

filter()
returns a brand-new array

forEach()
mutates the existing array

49

How is map() different from
filter()?

50

Functional Loops

map() will return a brand-new
array like filter() does;
however, the length of the
array that map() returns will
be the exact same as the
input array.

This isn’t always the case
for the filter() method.

51

Questions?

52

Instructor Demonstration
Template Literals

53

Template Literals

Using string interpolation, or template strings, we have a new way of
concatenating variables to the rest of strings.

This is a new feature included in ES6.

Template strings are much more readable and easier to manage.

Consider the following example:

const arya = {
 first: "Arya",
 last: "Stark",
 origin: "Winterfell",
 allegiance: "House Stark"
};

const greeting = `My name is ${arya.first}!
I am loyal to ${arya.allegiance}.`;

54

What are the main differences
that you notice in syntax between
regular string concatenation
and template literals?

55

Template Literals

Additionally, instead of
using plus signs, we can now
reference variables explicitly
using the ${} syntax.

Immediately we notice that
template strings use

backticks instead of quotes.

56

Questions?

57

Suggested Time:

Activity: Template Literals

10 Minutes

58

Time’s Up! Let’s Review.

59

Review: Template Literals

Template strings are much easier to read than traditional string concatenation.

Dealing with spacing is a lot easier using template literals.

Don’t forget to use backticks instead of quotes. This is a very easy mistake to make.

60

Review: Template Literals
In the following example, we create a template string that will eventually be injected into the DOM:

const music = {
 title: "The Less I Know The Better",
 artist: "Tame Impala",
 album: "Currents"
};

// write code between the <div> tags to output your objects data
const songSnippet = `
 <div class="song">
 <h2>${music.title}</h2>
 <p class="artist">${music.artist}</p>
 <p class="album">${music.album}</p>
 </div>
`;
const element = document.getElementById("music");
element.innerHTML = songSnippet;

We use the ${} syntax to reference the music object and the variables within it in the template
string. That template string eventually gets added to the DOM as pure HTML.

61

What are the benefits of using
template strings?

62

They are easier to read and easier to
manage. They also allow us to maintain
indentation and formatting of the
content when inside the backticks.

63

What can we
do if we don’t

completely
understand this?

63

64

We can refer to supplemental material, read the
MDN Web Docs on template literals,

and stick around for office hours to ask for help.

https://developer.mozilla.org/en-US/docs/Web/JavaScript/Reference/Template_literals

65

Questions?

6666

